a2 United States Patent

Rosenberg

US009357076B2

US 9,357,076 B2
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

LOAD BALANCING OF DISTRIBUTED
MEDIA AGENTS IN A CONFERENCE

SYSTEM

Applicant: Cisco Technology, Inc., San Jose, CA
(US)

Inventor: Jonathan D. Rosenberg, Frechold, NJ
(US)

Assignee: Cisco Technology, Inc., San Jose, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 167 days.

Appl. No.: 14/298,014

Filed: Jun. 6,2014

Prior Publication Data

US 2015/0358472 Al Dec. 10, 2015

Int. CL.

H04M 3/56 (2006.01)

HO4L 29/06 (2006.01)

HO4L 12/803 (2013.01)

HO4L 29/12 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC H04M 3/56 (2013.01); GO6F 17/30861

(2013.01); HO4L 47/125 (2013.01); HO4L
61/1511 (2013.01); HO4L 65/1069 (2013.01);
HO4L 65/403 (2013.01); HO4L 61/2575
(2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,983,660 B2 7/2011 Bao et al.
8,265,614 B2 9/2012 Allen et al.
8,589,563 B2 11/2013 Ethier et al.
2008/0219223 Al* 9/2008 Bienas H04M 7/0072
370/338
2010/0165889 Al* 7/2010 Madabhushi HO04M 3/2227
370/261
2013/0196637 Al 8/2013 Allen et al.
2013/0339781 Al* 12/2013 Wamorkar GOG6F 11/20
714/4.2
2015/0058469 ALl* 2/2015 Li cocovvvivinicenn HO4L 43/08
709/224
2015/0249547 Al* 9/2015 Layman ... HOAL 12/462
370/260

* cited by examiner

Primary Examiner — Faruk Hamza
Assistant Examiner — Cassandra Decker

(74) Attorney, Agent, or Firm — Edell, Shapiro & Finnan,
LLC

(57) ABSTRACT

A load balancer controls a cluster of media agents each con-
figured to perform media packet processing operations in a
conference session. The load balancer receives a Session
Traversal Utilities for Network Address Translation/Transla-
tor (NAT) (STUN) request from a caller to establish media.
The STUN request includes a conference identifier (ID) for
the session. The load balancer determines an availability of
each of the media agents in the cluster, selects a media agent
for the caller based on the conference ID and the determined
media agent availabilities, forwards the STUN request to the
selected media agent, and routes media packets between the
caller and the selected agent for the session.

25 Claims, 19 Drawing Sheets

1402

RECEIVE STUN REQUEST WITH CONFERENCEID |

>

o

MONITOR AVALABILITY OF EACHAGENTIN |~/
AGENT CLUSTER

IN RESPONSE TO STUN

REQUEST, SELECT AN

AVAILABLE AGENT FROM AGENT CLUSTER(EG., }—
BASED ON THE CONFERENCE ID}

MAP CALLER-LOAD BALANCER CONNECTIONTO | ____/
LOAD BALANCER-AGENT CONNECTION

SUPPORT MEDIA PACKET FLOW BETWEEN |/
CALLER AND AGENT BASED ON MAPPING

US 9,357,076 B2

Sheet 1 of 19

May 31, 2016

U.S. Patent

1Ol

| TV
0} 5

WL (10l

EifL)
INFNOMEITIVO

g1

{9901
Y ¥

ana1o

AL

171904
¥

43TICHINGD
WHINGD |)

HAOMIIN
NOILYOINNAWAOD

(7Ll 00 ol
WILSAS IONTUIAND)

U.S. Patent May 31, 2016 Sheet 2 of 19 US 9,357,076 B2

CENTRAL CONTROLLER 102
MEDIA AGENT 106
CALLER/CLIENT 108

LB 114

CONTROLLER 200 FOR

20
NETWORK
INTERFACE |
UNIT
210
PROCESSOR }—"
20
~
MEMORY
2| [commat 230
o DATABASE | |
0 106 108 114
cocrﬁzgﬁm VEDIA AGENT | |CALLERICLIENT 8
o L0GIC L0GIC LOGIC
i /
25~ 25— 225~ 2254~

FIG.2

US 9,357,076 B2

Sheet 3 0f 19

May 31, 2016

U.S. Patent

5901
¢ LNE9Y

2190}
L INZOVY

£9l4
e A
¢ x/ 3&
0ee 3 HIMSNY das
7/SUWIBRIIS/7 | £7/SBNUBALIOY ZXMIT-UNS
] HLIM 43IMSNY das
p
8% \\: 976
¥3440 d0S HLIM 3NN3A OL WY3HLS 0y .k
3440408
~
423 R 175
0%~ HIMONY d0S
}fSUBBIS/7 LE 7 /SoNUBAIOY ZXM UM
~ HLIM Y3MSNY daS
808 [e
Y3440 d0S HLIM 3NN3A 0L WYIHLS aay s e
43440 40S
200 708 2801 1130)
HITIONINOD SN007 LT L Y3TIVO
00¢
A43A00SIT 8 SSF0IVY TVO

US 9,357,076 B2

Sheet 4 of 19

May 31, 2016

U.S. Patent

79ld
02
oy ISNOJSTY NNLS
ETiEEE ISNOdSIY NNLS
YIG3IW W01 8aTIng oy
-
TINNATQ OL HOLSIONI did - INITAdId YIaTN IivI
U
N
00100 LYHM
-
IINFAMINY S Oy
SIHL S3ZIN90D3Y /807
1S3N03 NNLS
N
90p 0
«
1S3N03H NNLS
¢la0} 2090} [0 03 7801 1801
ZIN3OY L INOY gINNLS HITIONINOD | | SNnooT Z93TV0 | {1 eaTvo
0or

(1 IN39Y 0aV) NOILYH¥NOIINOD YIGIW

US 9,357,076 B2

Sheet 5 0f 19

May 31, 2016

U.S. Patent

I
05,
815 ISNOSTY NNLS
ISNOCSTE NNLS
\whm
: 7 IN39Y OL HOLSTONI ALY - INMAdId VIGI YK
26.
INNTA IAWYS HLIM Z :
INTOV ONY | INTOY {00100 Ly
3LYI90SSY 01 43sn
a1 IONTHIINOD ~
'IANIA MIN SY 01
SIHL $IZIN9OT3Y /808
1S3ND3Y NALS
N
90 ”
a
1SINOIHNNLS
6190} 2901 {eh) 00 206 FARID g0
Z N3OV L INOY gINNLS HITIONINGD | | SNo0T 29TV | EITIv

(IN39OV QQv) NOILYMNOIINOD YIGIN

005

US 9,357,076 B2

Sheet 6 of 19

May 31, 2016

U.S. Patent

9914
s 019
iy
809
/
did
909
;
diy
109
/
dL¥
209
.
diy
61901 290/ il u 3 280 Vg0t
7 INOY L N3OV gINNIS YITIONINDD $N907 243TVD L HITIVD
009
MOT4 VIA3N

US 9,357,076 B2

Sheet 7 of 19

May 31, 2016

U.S. Patent

L[9l4
i.\./
JSNOASTH NNLS
2~
ISNOCSTH NNLS
A \
A _ AD0T0d0L MIN
j
WYALS AN 0
\\\mON
1S3ND3M NNLS
P
1S3NDIM NNLS
0 SNOLLOYSNYHL
A NNLS 3LVILING LNOTWIL Jg ,
$v
 INFOY
6190} 2900 vl 201 08 fg01 {11801
7 IN39Y | INTOY qINNLS NITIOHINGD $N007 AL LIV
00/
ASIA0D3Y N4 INFOY

US 9,357,076 B2

Sheet 8 of 19

May 31, 2016

U.S. Patent

8914
808
dly
s 908
did
s 08
dly
- 708
\
diy
5190} 790} [Or w0 708 [180t
7 INFOY) INFOY gINNLS HITIONINGD SN001 2YITV) ENRA

008

US 9,357,076 B2

Sheet 9 of 19

May 31, 2016

U.S. Patent

(1) HoNVH 38N () swon s VEOl4

(¥) anoo xasaM/ 00810

[
@ SINdDY
%

A
\
016
006
ST300W INFWAOIIT LNOY

U.S. Patent

May 31, 2016 Sheet 10 of 19

US 9,357,076 B2

STANDALONE BRANCH OR CAMPUS AGENT

9
96
? | ExteRNAL
P

INTERNAL

ANYCAST —
[7| UNIGAST

P 922 924 P

FIG.9B

U.S. Patent May 31, 2016 Sheet 11 of 19 US 9,357,076 B2
PINHOLE CONFIGURATION

%0 FULL AGENT DEPLOYED
| CISCOCLOUD o INCISCODC

965
| INTERNET

964\ FIREWALL

%ZL DMZ

960
. DMZ FIREWALL

956 OUTBOUND ONLY AGENT
o INTRANET T DEPLOYED ON NTRANET

FIG.9C

U.S. Patent May 31, 2016 Sheet 12 of 19 US 9,357,076 B2

102
CONTROLLER |/
1000 SoP
\ OFFER /1010
1002 / CREATED: 1014 [ANYCAST)
' ' /
- spp | STUNURLLST a=canddate] 234
ANSWER a=candidate:media.ford.com
1004 < a=candidate:media.didata.com 1018
a=candidate:media.wbx2.com
108(1) a=cisco-venue:a2’
CALLER J

FIG.10

U.S. Patent May 31, 2016 Sheet 13 of 19 US 9,357,076 B2

FORD'S GEO o
DNS DNS SERVER —
DISCOVERY
11@\ B
DNS
medaford.com| ,/ 0423
P /
STUNRQST.
ADDRESS P 0123
ADDRESS
CALLER
108(1)

FIG.11

U.S. Patent May 31, 2016 Sheet 14 of 19 US 9,357,076 B2

ANYCAST FOR BRANCH DISCOVERY

1200
202
BRANGH NETWORK |/
120 120 1202
R B D
1061) 106(2)
AGENT |/ AGENT | AGENT
0423 0423 106(3)
STUNRQST. TO STUNRQST.TO || BRANCH
10423 10123
CALLER CALLER
108(1) 1082)

FIG.12A

U.S. Patent May 31, 2016 Sheet 15 of 19 US 9,357,076 B2

LOCKING DOWN ANYCAST ADDRESSES TRANSACTIONS
1220

108(1) N o / 1222 - 106(2)
STUNTO ANYCAST
CALLER AGENT
REVERSE CHECK
FROM ACTUAL IP
N 1224
FIG.12B

LOCKING DOWN ANYCAST ADDRESSES TRANSACTIONS
1230

108(1 1222 106(2
STUN TO ANYCAST
CALLER ALTERNATE SERVER: AGENT
MY IP
\ 1232

FIG.12C

U.S. Patent May 31, 2016 Sheet 16 of 19 US 9,357,076 B2

108 102 1300
) SDP OFFER (CALLER ID) a
caer |0
SDP ANSWER wiSTUN URL | CONTROLLER
0 FOR STUN URL
CALLER . A §
AGENT/AGENT CLUSTER IDENTIFIER DOMAIN NAMES / IP ADDRESSES
IDENTIFIER DATABASE 1304 | J
CALLER IDENTIFIERS AGENT CLUSTER IDENTIFIERS
CROSS-REFERENCES — = GEONS = ANYCAST
CALLER 1 ENTERPRISE BRANCH (DOMAIN NANE, IP ADDRESS)

CALLER 2 * ENTERPRISE CAMPUS {DOMAIN NAME, IP ADDRESS)
CALLER3 \\ PARTNERS
3

N CISCO-WEBEX (DOMAIN NAME)

[X X]

FIG.13

U.S. Patent May 31, 2016 Sheet 17 of 19

US 9,357,076 B2

1402

RECEIVE STUN REQUEST WITH CONFERENCE ID

AGENT CLUSTER

MONITOR AVAILABILITY OF EACHAGENTIN |

1404

IN RESPONSE TO STUN REQUEST, SELECT AN
AVAILABLE AGENT FROM AGENT CLUSTER (E.G,,
BASED ON THE CONFERENCE ID)

1408

MAP CALLER-LOAD BALANCER CONNECTION TO
LOAD BALANCER-AGENT CONNECTION

_

CALLER AND AGENT BASED ON MAPPING

FIG.14

SUPPORT MEDIA PACKET FLOW BETWEEN |

U.S. Patent May 31, 2016 Sheet 18 of 19 US 9,357,076 B2

106(1) 10620 106(3) 106(4) 106(5) 106(6
o) 06) 106 0o 108S) - 1066)

‘\
A A A A A A
AGENT
I >~ CLUSTER
1506 104
STUN LOAD BALANCER
/
141y~
— P SN
1504
CALLER |
108(1)

FIG.15

U.S. Patent May 31, 2016 Sheet 19 of 19 US 9,357,076 B2

GLOBAL CAPACITY HANDLING
1600
PARTNER
g8
ENT. CANP. DC
g6
ENT, BRANCH
20
N9y W,
500 200
_ /
CALLER
N 108(1)

FIG.16

US 9,357,076 B2

1
LOAD BALANCING OF DISTRIBUTED
MEDIA AGENTS IN A CONFERENCE
SYSTEM

TECHNICAL FIELD

The present disclosure relates to conference sessions in
cloud-based conference systems.

BACKGROUND

Today, conference solutions are generally of two types.
There are premise-based conferencing systems and there are
cloud-based conferencing systems. Premise-based systems
have the benefits of keeping media associated with a confer-
ence session on premise, allowing for enterprise Quality of
Service management, reduction of wide area network band-
width costs, low latency, and so on. However premise-based
systems are more complicated to manage for certain topolo-
gies, and require relatively high up-front costs. Cloud-based
conference services seamlessly enable business-to-business
and business-to-consumer conferencing but can incur rela-
tively high wide area network costs, latency penalties, and
possible quality degradation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is anillustration of a highly-distributed cloud-based
conference system in which techniques presented herein for
conference session access, media agent discovery, and con-
figuration of a media topology may be implemented, accord-
ing to an example embodiment.

FIG. 2 is a block diagram of an example generalized con-
troller that may be used in any of a central conference con-
troller, a media agent, a load balancer, and a caller/client of
the conference system.

FIG. 3 is an example transaction diagram for establishing a
conference session by accessing and discovering media
agents for the conference session, according to an example
embodiment.

FIGS. 4-6 are example transaction diagrams directed to
configuring the discovered media agents into a media topol-
ogy to support media packet flow.

FIGS. 7 and 8 are example transaction diagrams directed to
failure recovery in the conference session.

FIG. 9A is an example agent deployment model in which
agents are deployed across various networks/clouds, accord-
ing to an example embodiment.

FIG. 9B is a block diagram of an example standalone
media agent deployed in either of enterprise branch or an
enterprise campus, according to an example embodiment.

FIG. 9C is an illustration of a corporate configuration in
which a communication pinhole is opened between full and
outbound media agents, according to an example embodi-
ment.

FIG. 10 is an example transaction diagram directed to
discovery of an agent in the clouds/networks of FIG. 9 by a
caller, according to an example embodiment.

FIG. 11 is an example transactions diagram directed to
caller discovery of an agent using a Geo-Domain Name Sys-
tem (DNS) discovery technique, according to an example
embodiment.

FIG. 12A is an illustration of branch discovery by a caller
using an anycast address in a branch network, according to an
example embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 12B are depicted transactions between a caller and a
media agent used to lock down anycast IP addresses, accord-
ing to one embodiment.

FIG. 12C are depicted transactions between a caller and a
media agent used to lock down anycast IP addresses, accord-
ing to another embodiment.

FIG. 13 is an illustration of resources used by the central
conference controller to generate a Session Traversal Utilities
for Network Address Translation/Translator (NAT) (STUN)
Uniform Resource Locator (URL) in response to a Session
Description Protocol (SDP) offer from a caller used to ini-
tially access a conference session, according to an example
embodiment.

FIG. 14 is a flowchart of an example method of controlling
media agents in a media agent cluster that is performed by a
load balancer, according to an example embodiment.

FIG. 15 is an illustration of an example caller-agent con-
nection that results from the method of FIG. 14, according to
an example embodiment.

FIG. 16 is an illustration of global capacity handling—Iload
balancing in the deployment model of FIG. 9A with high-call
numbers, according to an example embodiment.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

Techniques are presented herein for load balancing across
media agents in a conference session. A load balancer con-
trols a cluster of media agents each configured to perform
media packet processing operations in a conference session.
The load balancer receives a Session Traversal Utilities for
Network Address Translation/Translator (NAT) (STUN)
request from a caller to establish media. The STUN request
includes a conference identifier (ID) for the session. The load
balancer determines an availability of each of the media
agents in the cluster, selects a media agent for the caller based
on the conference 1D and the determined media agent avail-
abilities, forwards the STUN request to the selected media
agent, and routes media packets between the caller and the
selected agent for the session.
Example Embodiments

Cloud-based Conference System

Referring to FIG. 1, there is an illustration of a highly-
distributed cloud-based conference system 100 in which
techniques presented herein may be implemented. This sys-
tem can be referred to as a hybrid system that provides a mix
of cloud-based features and on-premise based features which
the short-comings of either solution in isolation. Conference
system 100 includes a central controller 102 located in a
“cloud” and configured to perform overall control of the
system 100. Conference system 100 includes multiple geo-
graphically distributed groups or clusters 104(1)-104(n) of
media agents (A) 106(1)-106(k) configured to operate under
control of the controller 102. For example, cluster 104(1)
includes media agents 106(1), 106(2), 106(3) and 106(4),
cluster 104(2) includes media agents 106(5)-106(7), cluster
104(3) includes media agents 106(8)-106(k), and so on.

Multiple callers/clients 108(1)-108(n) access and partici-
pate in conference sessions (also referred to as “conference
calls”) through media agents under control of the controller
102. The example of FIG. 1 shows two callers, “callerl” at
108(1) and “caller2” at 108(2) engaged in a conference ses-
sion through two associated media agents “agent1” at 106(1)
and “agent2” at 106(5) in clusters 104(1) and 104(2), respec-
tively. In the ensuing description, media agents A are referred

US 9,357,076 B2

3

to collectively as “media agents 106 depending on the con-
text. Similarly, callers/clients 108(1)-108(n) may be referred
to collectively as “callers 108,” and agent clusters 104(1)-104
(n) may be referred collectively as “clusters 104.”

The controller 102 resides in a “cloud” or data center 110.
To control system 100, the controller 102 performs control
plane signal operations/functions using such features/func-
tions afforded the Session Initiation Protocol (SIP), H323
access, rosters, and conference control operations (including,
e.g., mute, kick, etc.). The controller 102 also performs
orchestration—which means it is responsible for controlling
the connections between media agents in different clusters to
ensure that a particular conference is fully connected and
provides the necessary audio and video processing functions.
Clusters 104 of media agents 106 each reside in a respective
cloud or data center shown at reference numerals 112(1)-112
(n), which may include enterprise networks, branch networks
and offices, carrier access networks, public clouds, and so on.
It is desirable for users to connect to media agents which are
topologically and physically near them, and for users in the
same location, for the same conference, to be connected to the
same media agent. Media agents 106 perform media (e.g.,
audio and video) packet processing operations in support of
conference sessions in which callers 108 participate, such as,
but not limited to, media packet mixing, switching, encoding,
decoding, and transcoding. One or more load balancing (LB)
servers 114 (also referred to simply as “load balancer(s)
114”), co-located and associated with each cluster 104, per-
form local control and selection of media agents 106 in that
cluster. For example, there are load balancers (LBs) 114(1)
and 114(2) associated with cluster 104(1), L.Bs 114(3) and
114(4) associated with cluster 104(2) and L.Bs 114(5) and
114(6) associated with cluster 104(3). In addition, the load
balancer function can be integrated into the media agent so
that it does not exist as a distinct physical component.

A conference session may involve the exchange of one or
more of audio and video between any number of participants
(callers) as well as the sharing of content by one participant
with one or more other participants. Such shared content may
include documents, presentations, audio content, video con-
tent, etc.

As will be described in detail below, techniques presented
herein dynamically configure highly-distributed resources in
conference system 100, including controller 102, media
agents 106, and load balancers 114, to support conference
sessions initiated by callers 108 on an as needed basis. In
support of these techniques, controller 102, media agents 106,
callers 108 and load balancers 114, implement and interact
with each other using a variety of communication protocols to
establish conference sessions and exchange media streams/
packets in the conference sessions. Such communication pro-
tocols include, but are not limited to: the Interactive Connec-
tivity Establishment (ICE) protocol; the Session Traversal
Utilities for Network Address Translation/Translator (NAT)
(STUN) protocol modified/extended to use STUN URLs, in
accordance with techniques presented herein; the User Data-
gram Protocol (UDP); and the Real-Time Transport Protocol
(RTP). The techniques described herein use the aforemen-
tioned protocols by way of example, only; other similar pro-
tocols may also be used instead of or in combination with the
mentioned protocols, as would be appreciated by one of ordi-
nary skill in the relevant arts having access to the description
presented herein.

Distributed media agents 106 may number in the tens of
thousands and be distributed geographically around the
world. Similarly, callers 108 may be located anywhere in the
world. Thus, conference system 100 is referred to as “highly

10

15

20

25

30

35

40

45

50

55

60

65

4

distributed.” A challenge presented by such a distributed
arrangement is to construct a “best” media topology in which
callers 108 are assigned to topologically nearest media agents
106 in support of media exchange between callers in confer-
ence sessions. In one conventional technique, the conference
controller attempts to track relative locations of media agents
and callers and uses control-plane signaling to direct the
callers to nearest agents; however, this does not scale
upwardly to highly distributed systems because the controller
cannot always determine the best/nearest media agents due to
outdated agent location databases and deficiencies in control
plane signaling that can lead to ambiguities. Moreover, media
agents are prone to failure and, often, the conference control-
ler may not become aware of such failure in a timely manner
(or at all) given the network separation between the controller
and the agent and inherent delays in control plane signaling
caused by that separation. In addition, it becomes challenging
to centrally track and manage the available capacity for such
a larger number of media agents. Finally, network based
techniques for discovery of localized media agents—includ-
ing anycast—cannot be done utilizing a central controller.
Accordingly, techniques presented herein address the chal-
lenge of assigning “best” media agents to callers in highly
distributed conference system 100 and rapidly recovering
from failures. An example of a “best” media agent for a given
caller is a media agent that is (i) available (i.e., operationally
capable of performing media agent operations), (ii) topologi-
cally nearest to the caller compared to other media agents, and
(iii) has available compute, networking and memory capacity
to handle the conferences. The techniques delegate the pro-
cess of discovering best media agents away from conference
controller 102 to media-plane signaling and discovery, com-
bined with late binding configuration of media topologies
(i.e., arranging the best media agents for media exchange
between the callers). At a high level, the techniques establish
or setup a conference session in two stages. A first stage, call
access and discovery, uses call access signaling primarily
between conference controller 102 and callers 108 that wish
to access the conference session. During the call access and
discovery stage, controller 102 provides information to call-
ers 108 to enable the callers to discover addresses of nearest
available agents 106 to support conference sessions, which
advantageously relieves the controller 102 of this task. In a
second stage, the controller 102 configures media agents 106
discovered by callers 108 in the first stage into a media topol-
ogy. Callers 108 then exchange media packets in the confer-
ence session over the so-configured media topology.
High-level transactions for establishing a conference ses-
sion are now described. Each of multiple callers 108 initially
contact conference controller 102 to access the conference
session and in response, the controller sends a URL for the
conference session to each of the callers. The URL includes a
conference identifier (ID) and information from which near-
est media agents 106 are discoverable. Alternatively, instead
of'using a URL, the conference ID and media agent discovery
information can be provided to the clients directly. Using the
information in the URL, each of callers 108 discovers a
respective Internet Protocol (IP) address corresponding to a
nearest media agent 106. Each caller 108 sends a conference
join request including the URL to a respective one of the
nearest media agents 106 (perhaps through a load balancer
114) via the discovered IP address. Each media agent 106
receives the respective join request, discovers an IP address
for controller 102 from the URL in the join request, and then
queries the controller to ask for further information about the
conference. Controller 102 associates the media agents 106
that sent join requests having the same conference 1D with

US 9,357,076 B2

5

each other and with the conference session, and configures
the associated media agents into the appropriate set of cas-
cades over which the callers exchange media packets in the
conference session. In embodiments in which the IP
addresses discovered by callers 108 corresponds to one or
more load balancers 114 each configured to control a respec-
tive cluster 104 oflocal media agents 106, callers 108 send the
respective join requests to the discovered load balancer(s).
Each load balancer 114 selects an available agent 106 from
the local agent cluster 104, forwards the join requests to the
selected media agent, and then the selected media agent for-
wards the join request to controller 102 after discovering the
controller, as mentioned above.

In an alternative embodiment, the load balancer function-
ality can be absorbed into the media agent. When the load
balancer receives the join request, it interrogates a shared
database amongst the load balancers, and determines which if
any media agent is already servicing the conference. If there
is already one assigned, the load balancer redirects the client
to that media agent. If not, the load balancer redirects the
client to a media agent in the cluster with available capacity.

Before describing the above-mentioned high-level trans-
actions in detail, the following definitions are provided for
various components and protocols mentioned above.

Media Agent: A media agent (e.g., any of the media agents
106(1)-106(k)) performs media processing functions under
control of conference controller 102, such as switching, mix-
ing, transcoding, presentation layout arranging, and the like.
A media agent is configured to form a pipeline which defines
a set of internal media processing functions that are applied.
These include buffering, decoding, mixing, switching, energy
level computation, and so on. The media agent can also be
configured to form a cascade. A cascade is a connection
between two media agents which carries media between them
in order to extend a conference across multiple media agents.
Conference controller 102 instructs each media agent as to
how to assemble the media pipeline and to which other media
agents it should form cascades. Media agents may commu-
nicate with other local media agents in the same cluster over
an inter-media agent message bus.

Conference controller: Conference controller 102 provides
overall control of initializing and configuring resources, such
as media agents 106, to support a conference session. A
conference session is also referred to herein as a “venue.”
Conference controller 102 exposes Internet/web Application
Programming Interfaces (APIs) to callers 108 and media
agents 106, which permit remote applications to request cre-
ation and manipulation of venues. The venue is a related set of
conference media streams which are logically connected
together with a media pipeline and cascades, i.e., media pack-
ets associated with each of the media streams are mixed
together and routed through the pipeline by the media agents
connected with the pipeline. Conference controller 102 deter-
mines the composition of the media pipeline and cascades
across media agents which will support the venue. For any
particular conference or venue, there is a single conference
controller instance in charge (though there may be replication
of'the data to other instances for purpose of high availability).

STUN: (Session Traversal Utilities for NAT) is a standard-
ized set of methods and a network protocol to enable an
endpoint host to discover an associated public IP address of
the host if the host is located behind a Network Address
Translation/Translator (NAT). STUN permits NAT traversal
for applications of real-time media, including voice, video,
messaging, and other interactive IP communications. STUN

25

35

40

45

6
is intended as a tool used in other protocols, such as Interac-
tive Connectivity Establishment (ICE). STUN is documented
in RFCs 5389 and 7046.

ICE: ICE is a technique used in computer networking
involving NATs in Internet applications of Voice-over-IP
(VoIP), peer-to-peer communications, video, instant messag-
ing and other interactive media. ICE is published in RFC
5245.

STUN LB: Callers 108 that comply with the ICE standard
perform STUN transactions (called connectivity checks) dur-
ing and before transmission of Real-Time Transport Protocol
(RTP) (media) flows. These STUN transactions serve as iden-
tification of media streams. The STUN LB (e.g., load bal-
ancer 114) interacts with callers 108 in the STUN transac-
tions (and in the RTP flows which follow) and direct them to
available media agents associated with the callers.

Generalized Device Controller

With reference to FIG. 2, there is depicted a block diagram
of an example generalized controller 200 for any of confer-
ence controller 102, media agent 106, load balancer 114, and
caller 108. Conference controller 102, media agent 106, and
load balancer 114 may each comprise one or more computer
servers controlled by an instance of generalized controller
200. Caller 108 may be a client device such as, but not limited
to, a Smartphone, a tablet, a laptop/personal computer, and
the like, controlled by an instance of generalized controller
200.

Generalized controller 200 includes a processor 210 that
processes instructions to perform operations for a respective
one of conference controller 102, media agent 106, load bal-
ancer 114, and client 108; and a memory 220 to store a variety
of'data and software instructions for execution by the proces-
sor 210. Generalized controller 200 also includes a network
interface unit (e.g., network interface card or multiple net-
work interface cards) 230 that enables network communica-
tions so that the generalized controller can communicate with
other devices, as explained in further detail hereinafter.
Memory 220 may comprise read only memory (ROM), ran-
dom access memory (RAM), magnetic disk storage media
devices, optical storage media devices, flash memory devices,
electrical, optical, or other physical/tangible (e.g., non-tran-
sitory) memory storage devices. The processor 210 is, for
example, a microprocessor or microcontroller that executes
instructions for implementing the processes described herein.
Thus, in general, the memory 220 may comprise one or more
tangible (non-transitory) computer readable storage media
(e.g., a memory device) encoded with software (e.g., control
logic/software 225) comprising computer executable instruc-
tions and when the software is executed (by the processor
210) it is operable to perform the operations described herein.
In addition, memory 220 incudes a data store or database 230
to store data used and generated by logic 225. Instances of
memory 220 residing in conference controller 102, media
agent 106, caller 108, and load balancer 114, respectively
includes, conference controller logic 2254, media agent logic
225b, caller logic 225¢, and load balancer logic 225d, to
perform the operations for the respective device as described
below.

Conference Session Setup

Turning to FIGS. 3-6, there will now be described a series
of example transaction diagrams that depict message trans-
actions between and operations performed by the various
components in system 100 (e.g., callers 108, media agents

US 9,357,076 B2

7

106, conference controller 102, load balancers 114, and so
on) that are used to establish or setup a conference session.
The examples of FIGS. 3-6 establish a conference session for
callerl and caller2 at reference numerals 108(1) and 108(2),
depicted in FIG. 1. In the example of FIG. 1, callerl and
caller2 connect with media agentl 106(2) and media agent2
106(5) in clusters 104(1) and 104(2), respectively. In other
arrangements, the media agents serving this conference ses-
sion may reside in the same cluster. Also, both caller]l and
caller2 (and other callers) may all connect with the same
media agent, i.e., a single media agent handles all of the
callers in a given conference session. In the ensuing descrip-
tion, a “media agent™ is also referred to simply as an “agent.”

Initial Call Access and Agent Discovery

With reference to FIG. 3, there is depicted an example
transaction diagram 300 for the first stage in establishing the
conference session, i.e., initially accessing and discovering
agents for the conference session.

Transactions 304, 306, 310, and 312 (described below)
through which callerl contacts conference controller 102 to
initiate access to the conference session may rely on signaling
protocols/messages, such as, but not limited to, SIP, H.232,
Representational State Transfer (REST)-based APIs, and the
like.

At 304, callerl sends an access request in the form of an
SDP offer to a locus 302. Locus 302 represents a call agent or
call manager that facilitates conference call setup, and may
offer REST-based APIs to join a conference session. The SDP
offer includes one or more callerl identifiers (IDs). Locus 302
recognizes the SDP offer from callerl as a conference call
access request.

At 306, locus 302 sends a request to the controller to
request creation of a new venue, and to furthermore add the
first media stream to this venue, as defined by the SDP offer.
The terms “conference” and “venue” as used herein are syn-
onymous and interchangeable.

Controller 102 receives the request from locus 302. Con-
troller 102 assigns a unique conference 1D for the conference
session that is about to be established for the first stream.
Controller 102 begins tracking various ones of streams from
callers 108 and agents 106 that are/will be associated with the
conference session (i.e., with the assigned conference 1D, as
will be described more fully below).

Controller 102 uses the callerl IDs to retrieve pre-provi-
sioned information, including, e.g., domain names and/or 1P
addresses, through which candidate media agents associated
with the callerl IDs may be discovered. The pre-provisioned
information may be stored in an agent/agent cluster identifier
database (see, e.g., database 1300 in FIG. 13, described
below). Controller 102 constructs a STUN URL for the con-
ference session based on the retrieved information. The
STUN URL includes the new conference ID and the retrieved
domain names and/or IP addresses. An example of a process
by which controller 102 constructs the STUN URL based on
the agent/agent cluster identifier database is described below
in connection with FIG. 13. The STUN URL includes infor-
mation/designators (e.g., the domain names) that will be used
by callerl to discover a best one of media agents 106 to which
callerl can connect in the conference session. Thus, the
STUN URL enables controller 102 to delegate agent discov-
ery to callerl. In essence, the STUN URL provides a layer of
indirection that allows callerl to discover the best media
agent. The indirection is result of the fact that the STUN URL
does not provide an IP address that points directly to the best
media agent, rather, the STUN URL is used by the caller as a

10

15

20

25

30

35

40

45

50

55

60

65

8

basis for discovery of such an IP address. Of course, simpli-
fied versions are possible where the controller does provide
an [P address of one or more media agents in the cluster that
the client should connect to.

In the example of FIG. 3, the STUN URL is “stun://
wx2.com/venues/2312/streams/1.” The STUN URL includes
a URL type designator (e.g., “stun”), a domain name (e.g.,
“wbx2.com”), a unique conference/venue identifier (e.g.,
“23127), and an associated media stream source identifier
(e.g., “1” for callerl). Another example STUN URL is
“stun://media.wbx2.com/conf283711,” in which the confer-
ence ID is “283711.” Other forms of the STUN URL are
possible.

At 310, controller 102 sends an SDP answer including the
STUN URL to locus 302. The STUN URL may replace the IP
address and port that would have otherwise been placed into
the SDP answer. Alternative encodings of the STUN URL are
possible. More generally, the SDP answer includes the unique
conference ID and media agent discovery information that
includes any information the caller will need/use to discover
an appropriate (e.g., nearest) media agent with which to con-
nect, as described below. The URL format for this informa-
tion is only one of many different formats that may be used.

At 312, locus 302 forwards the SDP answer with the STUN
URL to callerl.

Caller1 receives the SDP answer with the STUN URL. In
response, at 314, caller] discovers the best agent based on the
STUN URL. STUN URL discovery techniques and example
scenarios are described in detail below in connection with
FIGS. 9-12, but are summarized here. Any discovery tech-
nique may be used by caller1 to resolve the STUN URL to an
IP address of the nearest available agent(s) 106. For example,
Domain Name System (DNS) discovery based on the STUN
URL may be used. Geo-DNS and split horizon DNS resolve
the URL to an IP address of an agent cluster 104 in a domain
that is geographically local to callerl. For example, DNS
discovery based on a domain name may return to the caller an
anycast [P address shared by multiple media agents in a local
branch office so that caller]l may be connected to the nearest
agent in the local branch office. Another form of discovery
that may be used is a service advertisement framework (SAF),
for example. Alternatively the STUN URL may encode an
anycast address directly. Or, it may be the DNS name that
resolves to one or more media agents in a specific cluster that
the client should connect to.

Often, the discovered IP address may be that of a load
balancer in an agent cluster; if this is the case, the load
balancer will select an available agent for callerl among the
agents in the cluster that is local to that load balancer.

In the above described transactions, the usage of STUN,
including the STUN URL, can be considered part of the ICE
protocol used to establish the conference call.

Next, transactions 324-344 mirror transactions 304-314,
except that transactions 324-344 relate to caller2. In transac-
tion 324-344, caller2 requests access to the same venue as
callerl, and receives an SDP offer from controller 102 that
includes a STUN URL that identifies that venue (i.e., includes
the same conference ID as the STUN URL sent from control-
ler 102 to caller] at 310). In the example of FIG. 3, the STUN
URL sent from controller 102 to caller2 at 330 identifies the
same domain name identified in the STUN URL sent from the
controller to callerl at 310 (e.g., wx2.com), but this is not
necessarily the case.

At the conclusion of the transactions shown in FIG. 3,
callerl and caller2 have used discovery techniques to resolve
respective STUN URLs received from controller 102 to IP

US 9,357,076 B2

9

addresses for respective first and second load balancers (or for
individual agents in cases where no load balancer exists).

The discovered IP addresses are used in the second stage of
conference session setup, which includes configuring discov-
ered agents into a media topology connected with callerl and
caller2 to support media exchange between the callers, as is
now described in connection with FIGS. 4-6.

Join Request (STUN) and Media Topology
Configuration

With reference to FIG. 4, there is depicted a series of
transactions 400 performed in the second stage to configure
agentl in relation to callerl.

At 404, caller] sends a join request to join the conference
session. In the example of FIG. 4, the join request is sent in the
form of a STUN request to load balancer 114 based on the IP
address discovered for that load balancer from the STUN
URL during the transactions 300 shown in FIG. 3. The STUN
request includes attributes related to callerl, including an IP
address of, and identity credentials for, callerl. The STUN
request also includes the STUN URL sent to callerl at 310.
The inclusion of the STUN URL in the STUN request is an
extension of the standard STUN protocol. In an example,
callerl discovered the IP address for, and sends the STUN
request to, load balancer 114(1) in cluster 104(1). Alterna-
tively, the STUN URL can be conveyed separately to the
media agent, outside of the STUN protocol, using media
plane data channels. The STUN request is sent as part of
connectivity checks mandated by the ICE protocol (RFC
5245).

In FIG. 4 and subsequent figures, load balancer 114(1) may
be referred to as a “STUN load balancer” (or “STUN LB”)
because the load balancer operates in accordance with the
STUN protocol, extended to include the STUN URL in accor-
dance with the techniques described herein. In essence,
STUN load balancer 114(1) acts like a Hypertext Transfer
Protocol (HT'TP) reverse proxy, but for media traffic, and uses
STUN as signaling to convey session parameters related to
establishing the conference session. In other embodiments,
load balancer 114(1) may operate in accordance with other
protocols that do not include STUN or that may be combined
with STUN.

Load balancer 114(1) receives the STUN request from
callerl. In response, at 406, load balancer 114(1) selects an
available agent for callerl from the local cluster 104(1) of
agents that operates under the control of that load balancer.
Load balancer 114(1) makes the selection based on factors
evaluated across all of the agents in the cluster, such as agent
availability (up/down status), agent computational loading/
processing bandwidth, and so on. Load balancer selection
operations are described more fully below in connection with
FIGS. 14 and 15. In the example of FIG. 4, load balancer
114(1) selects agentl 106(2).

At408, load balancer 114 forwards the STUN request from
callerl to the selected agent (e.g., agent1) 106(2). In alterna-
tive embodiments, load balancer 114 may redirect the client
to connect to the selected agent. For example, the load bal-
ancer functionality may be incorporate into a media agent, in
which case, when the (discovered) media agent receives the
joinrequest (e.g., STUN request), the media agent determines
the conference session from the conference ID in the request,
identifies a media agent that is best suited to handle the
conference session, and redirects the caller to connect to the
best suited media agent. In this example, to identify the media
agent that is best suited, the media agent that received the join
request determines whether the conference session is already

10

25

30

40

45

10

being handled by a media agent in the cluster. Ifit is, then that
agent already handling the conference session is the one best
suited to handle the conference session. If it is not, the media
agent identifies an available agent based on capacity, with the
identified agent being the one best suited to handle the con-
ference session.

The selected agent (e.g., agentl) receives the STUN
request. In response, at 410, the agent connects to the con-
troller, i.e., forms a connection with the controller. In one
embodiment, the agent is configured with a static domain
name for the farm of controllers, and the conference 1D is
included in the HTTP request towards this farm. Using com-
mon web service design techniques, any server in the farm
can process the request, and it will utilize the conference ID
information included in the request to fetch the state for the
conference from a backend database. In an alternative
embodiment, the STUN URL can include additional infor-
mation which identifies—by DNS name or IP address—the
specific controller instance handling this conference.

At 412, agentl sends an action/instruction request includ-
ing the STUN URL to controller 102 (discovered at 410). The
action/instruction request is a request for instructions from
controller 102 on what next action agentl is to take with
respect to the STUN request for the venue indicated in the
STUN URL.

Controller 102 receives the action request from agentl.
Controller 102 recognizes the conference ID in the STUN
URL and that callerl, caller2, and now agentl are associated
with that conference ID. In response to such an action request,
generally controller 102 commands the agent to perform spe-
cific functions associated with the conference session (such
as switching, media mixing, transcoding, layout arranging,
etc.) and provides IP addresses of other agents to which the
agent should connect to form a dynamic cascade of agents
(i.e., the controller configures the media agents into a media
topology connected with the callers). As such, controller 102
configures the media topology as a cascade as callers 108
connect to their respective agents, one caller at a time.

Continuing with transactions 400 in the example of FI1G. 4,
in response to the action request from agent1, at 414, control-
ler 102 sends a “make pipeline” instruction to agent1 to cause
agentl to setup a media pipeline (over which media packets
can flow to and from callerl. Because a second/peer agent for
caller2 has not yet been identified to controller 102 for this
venue, the “make pipeline” instruction to agentl uses an
“RTP ingester to devnull” command to direct agentl to
accept/ingest media packets from callerl, but discard
(“devnull”) the media packets. In this example, it is assumed
that media packet flow will be in accordance with RTP; how-
ever, other media transaction protocols may be used.

More generally, transactions 412 and 414 represent com-
munication or interaction between the media agent and the
controller by which the discovered media agent requests con-
figuration information, and obtains the media configuration
information, from the controller that the media agent then
uses to form or set up a media connection over which the
caller can exchange media packets. In other words, in trans-
actions 412 and 414, responsive to the requests from the
discovered media agent, the controller provides the necessary
media configuration information to the media agent.

At 418, agentl sends to load balancer 114(1) a STUN
response indicating the agent 106(2) has completed STUN
actions initiated responsive to the STUN request sent at 408.

At 420, load balancer 114 forwards the STUN response to
callerl. The STUN request from transaction 404 is essentially
a peer-to-peer connectivity check that verifies the address of

US 9,357,076 B2

11

load balancer 114(1)/agentl 106(2). As a result, the STUN
response may return to callerl a peer reflexive address of the
load balancer/agent.

With reference to FIG. 5, there is depicted a series of
transactions 500 performed in the second stage to configure
agent2 106(5) in relation to caller2 108(2).

Transactions 504-512 mirror transactions 404-412 dis-
cussed above, except that transactions 504-512 relate to
caller2 and result in selection of agent2 as the nearest avail-
able agent for caller2. The STUN request forwarded from
agent2 to controller 102 at 508 carries the same conference ID
as the STUN request forwarded from caller1 to the controller
at 408 in FIG. 4. Controller 102 associates agent1 and agent2
with the (same) conference session based on the conference
IDs in the forwarded STUN requests. The unique conference
ID in the STUN URL is an end-to-end unifying ID in system
100, because the conference ID was initially sent from con-
troller 102 to each caller, and from each caller to the STUN
load balancer 114(1), respective agent, and controller 102, in
turn. This enables controller 102 to delegate discovery of
agents to the caller, yet learn the discovered agents later in the
conference setup.

In one example, agentl and agent2 are in the same cluster
and access to the agents is provided by a common load bal-
ancer for that cluster. In another example, agent1 and agent2
are in different clusters and access to each agent is provided
through a different load balancer (one for each of the different
clusters). In another example, a single agent may be used, i.e.,
agentl and agent2 are collapsed to one agent. Thus, load
balancer 114(1) in FIGS. 4 and 5 may represent one common
load balancer or, alternatively, two different load balancers.

At 514, controller 102 sends an instruction to agent2 direct-
ing agent2 to ingest media packets from caller2 and form a
media cascade (i.e., media connection) with agentl over
which media packets may be exchanged between callerl and
caller2.

At 516, controller 102 sends an instruction to agent1 direct-
ing agentl to form/finalize the media cascade (initiated at
414) with agent2. As a result, agent]l and agent2 form the
media cascade over which callerl (connected with agentl)
and caller2 (connected with agent2) can exchange media
packets. Agentl and agent2 mix and transcode the media
packets flowing between the callers as necessary. In this
simple use case since there are only two callers, the agents
simply forward the media packets.

At 518, agent2 sends a STUN response to load balancer
114(1).

At520, load balancer 114(1) forwards the STUN response
to caller2.

After transactions 400 and 500 are completed, media pack-
ets can flow between callerl and caller2 in the conference
session, as depicted in FIG. 6.

With reference to FIG. 6, there is depicted a transaction
diagram 600 in which media packets are exchanged between
callerl and caller2 in the conference session using the media
topology (connection/pipeline/pathway) established by
transactions 300-500 depicted in FIGS. 3-5. Transactions
602-610 represent media flow from callerl to caller2 in the
order: callerl; load balancer 114(1); agentl; agent2; load
balancer 114(1); and callerl. Media packets may flow in the
reverse direction as well.

Media Agent Failure Recovery
With reference to FIG. 7, there is depicted a transaction

diagram 700 for agent failure recovery in the conference
session established in FIGS. 3-6.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

At 702, agentl fails. For example, agentl stops sending
media packets from caller2 to callerl.

At 704, callerl detects the absence of media packets from
agentl for, e.g., 1 second, as a failure and, in response, ini-
tiates STUN transactions.

At 706, callerl sends a second STUN request to load bal-
ancer 114(1).

At 708, load balancer 114(1) (aware that agent1 has failed)
selects another available agent (not agent1) in the local cluster
and forwards the STUN request to that agent, e.g., to agent2.

At 710, agent2 proceeds as if accessing a new call. Thus,
agent2 and controller 102 exchange media configuration
messages similar to those for a new conference as discussed
above at 412, 414, 512, 514, and 516. The configuration
messages terminate with STUN responses 712 and 714.
These STUN transactions in the media plane (not the control
plane) trigger the readjustment of the media plane topology to
include agent2 as the new media agent for caller] in place of
failed agentl. Traditional conferencing systems in this situa-
tion would require the caller to re-establish the call, including
call signaling, SDP offer/answer exchanges, media negotia-
tion, and discovery, which are slow. In this invention, the
reconnection occurs only at the media plane layer (using
STUN or similar functionality) which is faster.

As a result of failure recovery transactions 700, media
packets flow as depicted in FIG. 8.

With reference to FIG. 8, there is depicted a transaction
diagram 800 of packet flow after the failure recovery imple-
mented through transactions 700. Transactions 802-808 rep-
resent media flow from callerl to caller2 in the order: callerl;
load balancer 114; agent2; load balancer 114; and caller2.

Agent Discovery Using STUN URLs

The STUN URL discovery techniques mentioned above
are now described in detail with reference to example sce-
narios illustrated in FIGS. 9A-9C, 10, 11, and 12A-12C.

With reference to FIG. 9A, there is depicted an example
agent deployment model 900 in which agents 106 are
deployed across various clouds. Model 900 includes an enter-
prise branch 904 that hosts only one agent 106. Additional
agents are distributed in clusters across an enterprise campus
906, partner clouds 908, and a Cisco WebEx cloud 910.
Clouds 904-910 in FIG. 9A may correspond to networks 112
depicted in FIG. 1, for example. Load balancers 114 (not
shown in FIG. 9A) associated with each cluster in clouds
906-910 provide access to local agents within that cloud. The
clouds 904-910 are associated with respective discovery pri-
orities 1-4, meaning that agents in enterprise branch 904 have
a higher discovery priority than the agents hosted in enter-
prise campus 906, and so on down the line. Using load bal-
ancers 114, if an agent cluster in any of clouds 906-910 runs
out of agent capacity, that cluster will generate a STUN error;
when used with ICE, this means the caller 108 will connect to
the highest priority cluster with available capacity. In an
embodiment, agents 106 in enterprise campus 906 or enter-
prise branch 904 are used only by clients 108 that are con-
nected to an enterprise network. At each of the discovery
priority levels, a nearest agent 106 can be discovered by a
Geo-DNS lookup. An anycast [P address may be preferred for
enterprise branch 904.

With reference to FIG. 9B, there is a block diagram of an
example standalone media agent 920 deployed in either of
enterprise branch 904 or enterprise campus 906. Media agent
920 corresponds to any of agents 600 deployed in a standal-
one configuration that does not include multiple agents 106
and does not include a load balancer. Standalone agent 920

US 9,357,076 B2

13

within enterprise cloud 904 or 906 has three IP interfaces,
including an anycast IP interface 922 and an internal unicast
IP interface 924 used by callers, and an external IP interface
926 that is public facing. External IP interface 926 operates on
aknown media port and is reachable from the public Internet.
External IP interface 926 is used when agent 920 connects to
other agents for cascaded media and to controller 102. Thus,
external IP interface 926 is used for, e.g., HI'TP-based com-
munications with controller 102 (not shown in FIG. 9B), and
RTP/STUN with other agents. The IP address of interface 926
should be pinholed in a firewall. A simplified deployment
model is one in which external IP interface 926 does not have
an inbound pinhole enabled; in that case the agent can only
cascade with other public facing agent, or it can utilize ICE
techniques interagent.

Agents include “full” agents that implement a bi-direc-
tional external IP interface 926. Agents may also include
“outbound” agents that implement only an out-bound exter-
nal interface. In the outbound case, agent uses the external IP
interface for outbound HTTP transactions with controller 102
and outbound RTP/STUN transactions with other full agents.
When controller 102 orchestrates a media cascade between
agents, and one of the agents is outbound only, that agent is
connected to a full agent. The outbound agent will send RTP
messages to the full agent, but will begin such transactions
with a STUN connectivity check (to prime any firewalls),
then send the RTP messages. This outbound STUN+RTP
opens a communication pinhole for receiving reverse RTP.
Alternatively, the “outbound” agents may utilize full ICE in
order to connect to each other even though both are behind
firewalls. This enables a simplified configuration in the cor-
porate firewall to allow outbound UDP (and reverse) from the
known port and from the set of known agent IP addresses,
which avoids the need for a demilitarized zone (DMZ) box.

With reference to FIG. 9C, there is an illustration of a
corporate configuration 950 in which the above-mentioned
communication pinhole is opened. An outbound agent 952
resides in an Intranet 956 and a full agent 958 resides in a
“Cisco” cloud 960. Outbound agent 952 sends messages to
full agent 958 in an outbound direction through a DMZ fire-
wall 960, a DMZ 962, a firewall 964, and the Internet 966.
Alternatively, in the same configuration, two outbound agents
can communicate with each other, utilize full ICE between
them in order to open communication pinholes in both fire-
walls.

With reference to FIG. 10, there is depicted call setup
transactions 1000 between controller 102 and caller 108(1),
leading to discovery of an available agent in clouds 904-910
that is nearest to the caller. The transactions include an SDP
offer 1002 from caller 108(1) to controller 102 and an SDP
answer 1004 returned from the controller 102. SDP answer
1004 includes a STUN URL list 1010. STUN URL list 1010
lists in an order of priority from top to bottom STUN URLs
for candidate agents (or agent clusters) “a=....” The STUN
URLSs can include an “anycast” address 1014 “1.2.3.4” for
load balancers in enterprise branch 910, and domain names
1018. Caller 108 discovers an available agent starting with the
highest priority STUN URL (anycast address 1014) and mov-
ing down the list.

With reference to FIG. 11, there are depicted transactions
1100 for discovery of an agent using Geo-DNS based on a
DNS name. Typically, but not necessarily, a DNS name may
be used for agent clusters hosted in partner clouds 908 and the
Cisco cloud (e.g., WebEx) 910. In the example of FIG. 11, to
initiate agent discovery, caller 108(1) sends the domain name
media.ford.com to a Geo-DNS server 1110 for Ford. Ford’s
DNS server 1110 uses Geo-DNS techniques to return an IP

10

15

20

25

30

35

40

45

50

55

60

65

14

address (e.g., “10.1.2.3”) of a closest agent cluster to caller
108(1). Typically, the IP address returned to caller 108(1)
represents a virtual IP address of a load balancer 114(1) of the
closest agent cluster. Also, the DNS lookup may produce an
anycast [P address, or a private address in the case of a
corporate DNS. Alternatively, if the load balancer function is
integrated into the nodes in the cluster, the DNS lookup may
return a random node in the cluster. If caller 108(1) is on
enterprise campus 906, corporate DNS names will be resolv-
able and produce a corporate internal virtual IP address or IP
address of one of the nodes in the cluster. Caller 108(1) sends
the STUN request to load balancer 114(1) identified by the
returned (discovered IP address) (see, e.g., STUN request
transaction 404 in FIG. 4).

With reference to FIG. 12A, there is an illustration of
branch discovery 1200 using an anycast address in a branch
network 1202 including three branches 1202a, 12025, and
1202c¢. Respective individual agents 106(1)-106(3) in each of
branches 12024-1202¢ share the same anycast address
“10.1.2.3” When caller 108(1) sends respective STUN
requests to the anycast address “10.1.2.3,” the STUN request
will be routed to one of agents in the branch that is nearest to
the caller. In a deployment of only one agent per branch with
no load balancer, the STUN request routes directly to the one
agent. Anycast discovery offers certain advantages, for
example, anycast discovery may be provide better discovery
than GeoDNS for fine grained, localized discovery. Anycast
discovery is configuration-free. Anycast works with UDP
based services and is ideal for STUN. With anycast, agents
maybe highly compartmentalized, enabling highly localized
connectivity that would be difficult for GeoDNS to achieve.

With reference to FIG. 12B, there are depicted transactions
1220 between caller 108(1) and agent 106(2) used to lock
down anycast IP addresses, according to one embodiment.
Because an RTP message sent to an anycast address may be
routed to different agents 106. Transaction 1222 is a STUN
transaction from caller 108(1) to agent 106(2). This initiates a
lock down of the destination IP address to that agent. Using
ICE, agent 106(2) generates a reverse connectivity check
transaction 1224 that is sent from the actual IP address of the
agent. This will appearto caller 108(1) as a new peer reflexive
IP address, and the caller will proceed to perform a check with
it and use it as a higher priority.

With reference to FIG. 12C, there are depicted example
transactions 1220 between caller 108(1) and agent 106(2)
used to lock down anycast IP addresses, according to another
embodiment. Transactions 1220 lock down the IP address of
agent 106(2) using a STUN redirect 1232 that includes an
ALTERNATE-SERVER attribute that points to the actual IP
of the agent itself.

In another alternative embodiment, the locked down IP
address can be provided through an out-of-band protocol,
such as a data channel protocol.

Generation of STUN URL

With reference to FIG. 13, there is an illustration of
resources 1300 used by controller 102 to generate a STUN
URL in response to an SDP offer from a caller, e.g., caller
108(1). Drawing from examples described above, callerl
sends an SDP offer at transaction 306 (FIG. 3) to initiate
access to a conference session. The SDP Offer includes an
authorization token that carries, e.g., callerl ID(s), such as a
device address, a user name, and so on, that controller 102
uses to identify and authorize the caller. Typically this token
is carried in the HTTP request and not in the SDP per se.

US 9,357,076 B2

15

Controller 102 authenticates caller]l based on the callerl
ID(s) in the SDP offer based on authentication databases (not
shown in FIG. 13) accessible to the controller.

Controller 102 has access to a variety of databases includ-
ing an Agent/Agent Cluster Identifier database 1304 that
stores a cross-reference between caller IDs 1306 and agent/
agent cluster domain names/(Unicast) IP addresses 1308
(corresponding to clusters of agents, e.g., load balancers, as
well as agents without load balancers). Generally, database
1304 reflects the various domain names and/or IP unicast
addresses to which the various load balancers and agents are
registered and cross-references those domains/addresses to
caller IDs.

The entries in database 1304 may be pre-provisioned. For
example, controller 102 may provide an administrative portal
through which an administrator may pre-provision database
1304, e.g., enter the domain names and IP addresses for load
balancers in agent clusters and agents without clusters, and
associate that information with caller IDs. Alternatively, the
entries of database 1304 may be generated automatically
using automated discovery and configuration techniques.

Construction of database 1304 may rely on the following
provisioning relationships. Every caller 108 is associated
with zero or one enterprises. This is zero for over the top
callers 108, and one for callers that are paid for by an associ-
ated enterprise. Every caller is associated with zero or one
partners. This is zero for over the top callers 108, or enterprise
callers that e.g., Cisco, sells to directly. It is one for partner
provided enterprises. For example, if Dimension Data is host-
ing agents 106 and resells to Ford, for a Ford caller, Dimen-
sion Data is their partner. If e.g., Cisco, has co-location deals
where agents 106 are placed in partner data centers which are
usable by any caller 108, such data centers are considered
Cisco data centers. An enterprise can optionally deploy
agents 106 atthe campus level, branch level, or both. Through
the administrative portal, the administrator provisions a
single IP address or domain name for branch, and a single 1P
address or domain name for campus. For IP addresses—these
may be IP anycast addresses that the administrator configures
to route to one of agents 106. For DNS names, these may be
GeoDNS capable, and the administrator may set up GeoDNS
resolution within their enterprise DNS. The administrator
makes entries into database 1304 in accordance with such
relationships.

Controller 102 accesses agent cluster IDs (e.g., domain
names and IP addresses) relevant to callerl based on the
authenticated ID of callerl. For example, controller 102 may
use the callerl ID as an index to the relevant agent cluster IDs.
In an embodiment, there will be a single DNS name for all of,
e.g., Cisco’s agent clusters, and GeoDNS will be used to
resolve the DNS name to a nearby cluster. If the caller is an
enterprise user, the partner, campus, and/or branch DNS/IP
are obtained. These may have all been provisioned by the
administrator, as mentioned above.

Controller 102 retrieves the accessed agent cluster IDs and
generates the STUN URL(s), i.e., one URL or a URL list,
with the retrieved information. In the example of FIG. 13, the
retrieved URL list matches URL list 1010 depicted in FIG. 10
based on the entries in database 1304.

Controller 102 sends the SDP answer, including the
retrieved STUN URL(s), to callerl at 310.

STUN Load Balancer Operation

As mentioned above, each agent cluster includes one or
more load balancers to control agents local to that cluster.
With reference to FIG. 14, there is depicted a flowchart of an

10

15

20

25

30

35

40

45

50

55

60

65

16

example method 1400 of load balancing across agents in a
cluster. This method is performed by the load balancer for that
cluster. Operations of method 1400 correspond with transac-
tions 406 and 506 described above in connection with FIGS.
4 and 5.

At1402, aload balancer receives a STUN request from one
of callers, e.g., callerl.

At 1404, the load balancer monitors/determines an avail-
ability of each agent in the local cluster. The load balancer
may determine an up/down status (i.e., operational/failure
status) of each of agents. In addition, the load balancer may
determine a processor loading/processing bandwidth for each
agent. Other indicators/factors of availability may be moni-
tored by the load balancer.

At 1404, the load balancer determines/selects one of agents
to process the STUN request for the caller based on the
determined agent availabilities, e.g., the load balancer selects
from among the agents that are determined to be operational.
The select operation is made to be “sticky,” meaning that in
most, but necessarily all, circumstances, the load balancer
selects the same available agent for all STUN requests that
include the same conference ID. The above-mentioned
“stickiness” represents a logical binding between the confer-
ence [D and the selected agent that will generally (i.e., inmost
circumstances) lead to that agent being selected for different
callers accessing the same conference session (i.e., using the
same conference ID); however, the binding is weak enough to
allow selection of different agents for the same conference ID
in cases where that agent is not available due to, for example,
insufficient processor bandwidth or failure of the agent, as
described below.

To this end, the load balancer may perform a consistency
hash over the conference ID included in the STUN request
modulus a number of agents in the cluster, so that the hash
result is constrained to that number of agents. For example,
assuming 15 agents in a cluster, the consistency hash will
hash the conference ID to a whole number between 1 and 15,
inclusive, or, more generally, to 1 of 15 IDs for respective
ones of the 15 agents. The consistency hash hashes the same
conference 1D to the same result to achieve “stickiness,” so
that the load balancer will select the same agent for multiple
callers that have sent the same STUN URL conference ID to
join/access the same conference. On the other hand, the con-
sistency hash hashes different conference IDs to different
hash results, so the hash will select different agents across
different conference IDs. Thus, in this embodiment, in gen-
eral, the load balancer selects a media agent that is determined
to be operational and utilizing a consistent hash of the con-
ference 1D to the set of available media agents.

Inanother embodiment, the load balancer randomly selects
or uses a round-robin technique to select an agent for a given
conference ID and stores a mapping between that conference
ID and the selected agent. Each time another STUN requests
arrives with the same conference 1D, the load balancer selects
the same agent based on the stored mapping.

In yet another embodiment, the load balancer monitors/
determines the processor loading of each agent. If the load
balancer detects that the processor loading of a given agent
exceeds a high threshold, the load balancer flags that agent as
being unavailable. The load balancer selects a next agent
instead of the flagged agent to handle subsequent STUN
requests. Processor loading may be determined as a percent-
age of a total processing bandwidth that is currently utilized
or, alternatively, a percentage of the total processing band-
width that is currently not utilized (and thus available).

In other embodiment, if the load balancer detects that all of
the available agents in a given cluster have exceeded the high

US 9,357,076 B2

17

threshold, the load balancer may activate or “spin-up” new
virtual machines to be used as additional agents in order to
add processing capacity to that cluster. Similarly, if the load
balancer detects that the processor loading of a given agent
falls below a low threshold, the load balancer may deactivate
that agent to conserve resources.

In another embodiment, the load balancer tracks the avail-
able CPU capacity of each of the nodes in the cluster. It
furthermore maintains a database—which can be a distrib-
uted database using DHT techniques for example—and
stores a mapping of venues to media agents. When a STUN
request arrives, the load balancer checks to see if the venue is
already assigned to a media agent. If it is, the load balancer
redirects the client to that media agent. If it is a new venue, the
load balancer selects the most lightly loaded media agent,
stores the association of venue to that media agent, and redi-
rects the client to that media agent.

Combinations of two or more the above techniques may be
used in the selection process.

After the load balancer has selected an available agent,
there are two logical connections in play that are known to the
load balancer, including (i) a first logical connection between
the caller and the load balancer represented as a first 5-tuple
including a Source IP address (caller), Source Port (caller),
destination IP address (load balancer), destination port (load
balancer), and (ii) a second logical connection between the
load balancer and the selected agent represented as a second
S-tuple including a Source IP address (load balancer), Source
Port (load balancer), destination IP address (agent), destina-
tion port (agent). The 5-tuple may also include a protocol
descriptor.

At 1406, the load balancer associates the first and second
logical connections to each other. For example, the load bal-
ancer stores a mapping between the two logical connections,
such as a mapping between the first and second S-tuples. That
way, when the load balancer receives a media packet from the
caller over the first connection, the load balancer knows to
forward/route the packet to the selected agent based on the
association/mapping between the first and second connec-
tions, and vice versa.

At 1408, the load balancer supports media packet flow
between the caller and the selected agent based on the stored
connection mapping between the first and second connec-
tions. In an embodiment in which the media packets are RTP
packets, the packets do not contain the conference ID. Thus,
the load balancer relies on the connection mapping to perform
the correct bidirectional routing/forwarding of the media
packets between the caller and the agent.

At 1410, if the load balancer detects that the selected agent
is no longer available, e.g., the agent has failed, the load
balancer rapidly selects a different available agent, constructs
and stores the appropriate connection mapping, and then
supports media flow between the caller and the new agent.

Alternatively, the client may detect a loss in received media
packets over a short period of time and construe the loss as an
agent failure. This prompts the caller to resend the STUN
request to the load balancer. In the meantime, the load bal-
ancer may have also detected the failure. As a result, the load
balancer selects a different agent to handle the call and stores
the appropriate connection mappings.

With reference to FIG. 15, there is depicted an illustration
of'an example caller-agent connection 1500 that results from
performing method 1400 and in which aload balancer acts as
an intermediary. In the example of FIG. 15, load balancer
114(1) has selected agent 106(4) from among the 6 agents
106(1)-106(7) in an arbitrary cluster 104 based on the con-
ference ID, and has formed first and second logical connec-

10

15

20

25

30

35

40

45

50

55

60

65

18

tions 1504 and 1506 over which media packets may flow
bi-directionally between the caller and the agent.

With reference to FIG. 16, there is an illustration of global
capacity handling 1600 that involves load balancing in
deployment model 900 with relatively high call numbers.
Due to the presence of load balancers, there is no need for a
centralized awareness of overall resource availability, i.e.,
controller 102 does not need to be aware of, or track, the
processor availability or utilization curves of individual
agents distributed across clouds 904-910. The load balancer
for each agent cluster in each of clouds 904-910 monitors
agent processor availability/capacity and performs load bal-
ancing of the agent cluster in that cloud. As long as a given
agent cluster has available processing bandwidth, the local
load balancer for that cluster sends a “200.” When the local
cluster has hit capacity, the load balancer 114 rejects STUN
requests with a “500.” The “200” and “500” represent
response codes and, as such, these are messages sent from the
load balancer back towards the caller/client. When used in
concert with ICE, this will result in the client getting con-
nected to the nearest cluster that has available capacity, which
is the desired result.

SUMMARY

Techniques Presented Herein Dynamically Configure
Resources in a Highly-Distribute cloud-based conference
system in connection with a conference session. Centralized
controllers are located in the cloud. Media agents are geo-
graphically distributed in massive scale (on the order of tens
of thousands) around the world so as to be located topologi-
cally near to callers/clients (i.e., users). A conference session
access/join process uses media path signaling, e.g., STUN, as
part of ICE to connect a caller to a nearby media agent using
any of a number of different discovery techniques, including,
but not limited to, anycast, split-horizon DNS, and the like.
Once the callers discover and connect to respective agents for
the conference session, the agents discover and contact the
conference controller. In response, the conference controller
configures the agents into a media topology for the confer-
ence session. Failover is accomplished by having the client
rapidly detect failure and repeat a STUN peer-to-peer trans-
action to connect to a new agent.

As a result, callers at various locations can easily join and
leave a conference session. The centralized controller can
configure/reconfigure the utilized media agents to begin or
end communication with other media agents to facilitate con-
ference session changes and/or network changes. This results
in optimal topologies as illustrated by the following
examples. If a conference session is between callers in the
same company foo.com, and foo.com has a media agent
deployed in its data centers, the media will be directed from
each caller to the agent in the company’s data centers—
similar to a typical premise-based conference session. If a
conference is between callers in the same company but that
company does not have a local media agent, the media will be
directed from each caller to the nearest cloud, as in a WebEx
conference session. If a conference is between callers in two
different companies, and both companies have an on-premise
media agent, the callers in company A are all connected to the
agent in company A. The callers in company B are all con-
nected to the agent in company B, and between them flows
switched media with (for example) the audio and video of the
top three active participants (speakers). This type of topology
is currently not available with conventional conference sys-
tems. An advantage is that it uses minimal WAN bandwidth.

US 9,357,076 B2

19

Thus, the techniques dynamically configure media topolo-
gies and effectively emulate topologies of pure cloud prod-
ucts, pure premise products, interexchange services, remote
dial-ins, and so on—all within a singular system architecture.
Advantages of such techniques include: large scale distribu-
tion of media agents with a centralized controller; an efficient
and straight-forward conference session joining process
which uses media-path discovery to connect a caller to a
nearby agent; a late binding control process by which the
topology of media distribution is modified by the conference
controller on-demand as callers are connected or reconnected
to nearby agents; and rapid failover and recovery, that uses the
same topology configuration process as is used to initially
establish a conference session, to have a client failover to a
new media agent if the previous agent fails (or cannot be
reached). Even further, the techniques retain all of the benefits
of centralized conference sessions in the cloud—single con-
ference URL, single roster, single SIP signaling ports, singe
conference control functions, yet media is distributed locally
for optimal usage of a wide area network (WAN) connection;
applicable to use cases with a singular architecture (described
above) that are currently using disparate systems; and create
a conferencing service that easily scales upward while main-
taining high quality.

Other techniques presented herein perform load balancing
across a cluster of media agents in connection with a confer-
ence session. Load balancing of conference sessions is per-
formed at the media layer using a STUN load balancer, which
directs STUN transactions (and messages) to an available
back-end media agent. The STUN messages include a con-
ference ID, which the load balancer can use as input to a
consistent hash, to route callers for the same conference ses-
sion to the same media agent. The load balancer can monitor
processor usage of the media agents to direct load balancing
and/or spin up/down virtual machine instances. The load
balancing techniques advantageously allow for media plane
discovery in a centralized conference architecture with dis-
tributed media; provide HTTP load balancing techniques at
the media layer, and are amenable to elastic expansion/con-
traction of media agent/server capacity; allow for localized
load balancing control, while still retaining centralized con-
ference state; and allow routers/switches to inspect STUN
messages and obtain information therein as a result of the
embedded conference ID in the STUN messages.

In summary, in one form, a method is provided comprising:
at a load balancer configured to control a cluster of media
agents each configured to perform media packet processing
operations in a conference session: receiving a Session Tra-
versal Utilities for Network Address Translation/Translator
(NAT) (STUN) request from a caller to establish media, the
STUN request including a conference identifier (ID) for the
session; determining an availability of each of the media
agents in the cluster; selecting a media agent for the caller
based on the conference ID and the determined media agent
availabilities; forwarding the STUN request to the selected
media agent; and routing media packets between the caller
and the selected agent for the session.

In summary, in another form, an apparatus is provided
comprising: an interface unit configured to enable communi-
cations with a cluster of media agents each configured to
perform media packet processing operations in a conference
session; and a processor coupled to the interface unit, and
configured to: receive a Session Traversal Utilities for Net-
work Address Translation/Translator (NAT) (STUN) request
from a caller to establish media, the STUN request including
a conference identifier (ID) for the session; determine an
availability of each of the media agents in the cluster; select a

10

15

20

25

30

35

40

45

50

55

60

65

20

media agent for the caller based on the conference ID and the
determined media agent availabilities; forward the STUN
request to the selected media agent; and route media packets
between the caller and the selected agent for the session.

In summary, in yet another form, a processor readable
medium is provided. The processor readable medium stores
instructions that, when executed by a processor, cause the
processor to: at a load balancer configured to control a cluster
of media agents each configured to perform media packet
processing operations in a conference session, receive a Ses-
sion Traversal Utilities for Network Address Translation/
Translator (NAT) (STUN) request from a caller to establish
media, the STUN request including a conference identifier
(ID) for the session; determine an availability of each of the
media agents in the cluster; select a media agent for the caller
based on the conference ID and the determined media agent
availabilities; forward the STUN request to the selected
media agent; and route media packets between the caller and
the selected agent for the session.

The above description is intended by way of example only.
Various modifications and structural changes may be made
therein without departing from the scope of the concepts
described herein and within the scope and range of equiva-
lents of the claims.

What is claimed is:

1. A method comprising:

at a load balancer configured to control a cluster of media

agents each configured to perform media packet pro-

cessing operations in a conference session:

receiving a Session Traversal Utilities for Network
Address Translation/Translator (NAT) (STUN)
request from a caller to establish media, the STUN
request including a conference identifier (ID) for the
conference session;

determining an availability of each of the media agents
in the cluster;

selecting a media agent for the caller based on the con-
ference ID and the determined media agent availabili-
ties;

forwarding the STUN request to the selected media
agent; and

routing media packets between the caller and the
selected media agent for the conference session.

2. The method of claim 1, wherein the STUN request is
received from the caller over a first logical connection
between the caller and the load balancer,

the STUN request is forwarded to the selected media agent

over a second logical connection between the load bal-
ancer and the selected media agent; and

the method further comprises:

storing a connection mapping of the first logical connec-
tion to the second logical connection, wherein the
routing includes routing the media packets between
the caller and the selected media agent over the first
and second logical connections based on the stored
connection mapping.

3. The method of claim 2, further comprising generating
the connection mapping as a mapping between first and sec-
ond 5-tuples respectively identifying the first and second
logical connections, wherein each 5-tuple includes a source
Internet Protocol (IP) address, a source port, a destination IP
address, a destination port, and a protocol.

4. The method of claim 1, wherein:

the determining includes determining for each media agent

an operational/failure status and a processor loading of
the media agent; and

US 9,357,076 B2

21

the selecting includes selecting a media agent that is deter-

mined to be operational and utilizing a consistent hash of

the conference ID to the set of available media agents.
5. The method of claim 4, further comprising:
activating a new media agent if all existing media agents
are each determined to have processor loading above a
high threshold; and

deactivating any media agents determined to have proces-

sor loading below a low threshold.

6. The method of claim 1, further comprising:

receiving a second STUN request from a second caller to

join the conference session, the second STUN request
including the conference ID; and

selecting the previously selected media agent for the sec-

ond caller based on the conference ID.

7. The method of claim 1, wherein:

the receiving includes receiving multiple join requests

including respective conference IDs;
the selecting includes:
selecting a same one of the media agents for each of the
multiple join requests if the respective conference IDs
are the same; and
selecting different media agents for each of the multiple
join requests if the respective conference 1Ds are dif-
ferent.
8. The method of claim 1, further comprising:
receiving a second STUN request from the caller to join the
conference session, the second STUN request including
the conference identifier (ID) for the conference session;

determining that the operational status of the selected
media agent is down;

selecting a second media agent for the caller; and

routing media packets between the caller and the second

selected media agent for the conference session.

9. The method of claim 1, wherein the STUN request is sent
as part of connectivity checks mandated by the Interactive
Connectivity Establishment (ICE) protocol (RFC 5245).

10. An apparatus comprising:

an interface unit configured to enable communications

with a cluster of media agents each configured to per-
form media packet processing operations in a confer-
ence session; and

aprocessor coupled to the interface unit, and configured to:

receive a Session Traversal Utilities for Network
Address Translation/Translator (NAT) (STUN)
request from a caller to establish media, the STUN
request including a conference identifier (ID) for the
conference session;

determine an availability of each of the media agents in
the cluster;

select a media agent for the caller based on the confer-
ence ID and the determined media agent availabili-
ties;

forward the STUN request to the selected media agent;
and

route media packets between the caller and the selected
media agent for the conference session.

11. The apparatus of claim 10, wherein

the STUN request is received from the caller over a first

logical connection between the caller and the load bal-
ancer,

the STUN request is forwarded to the selected media agent

over a second logical connection between the load bal-
ancer and the selected media agent; and

the processor is further configured to:

store a connection mapping of the first logical connection

to the second logical connection, wherein the processor

10

20

30

35

40

45

50

60

65

22

is configured to route by routing media packets between
the caller and the selected media agent over the first and
second logical connections based on the stored connec-
tion mapping.

12. The apparatus of claim 11, wherein the processor is
further configured to generate the connection mapping as a
mapping between first and second 5-tuples respectively iden-
tifying the first and second logical connections, wherein each
S-tuple includes a source Internet Protocol (IP) address, a
source port, a destination IP address, a destination port, and a
protocol.

13. The apparatus of claim 10, wherein:

the processor is configured to determine by determining for

each media agent an operational/failure status and a
processor loading of the media agent; and

the processor is configured to select by selecting a media

agent that is determined to be operational and utilizing a
consistent hash of the conference ID to the set of avail-
able media agents.

14. The apparatus of claim 13, wherein the processor is
further configured to:

activate a new media agent if all existing media agents are

each determined to have processor loading above a high
threshold; and

deactivate any media agents determined to have processor

loading below a low threshold.

15. The apparatus of claim 10, wherein the processor is
further configured to:

receive a second STUN request from a second caller to join

the conference session, the second STUN request
including the conference ID; and

select the previously selected media agent for the second

caller based on the conference ID.
16. The apparatus of claim 10, wherein:
the processor is configured to receive by receiving multiple
join requests including respective conference IDs; and
the processor is configured to select by:
selecting a same one of the media agents for each of the
multiple join requests if the respective conference IDs
are the same; and
selecting different media agents for each of the multiple
join requests if the respective conference 1Ds are dif-
ferent.
17. The apparatus of claim 10, wherein the processor is
further configured to:
receive a second STUN request from the caller to join the
conference session, the second STUN request including
the conference identifier (ID) for the conference session;

determine that the operational status of the selected media
agent is down;

select a second media agent for the caller; and

route media packets between the caller and the second

selected media agent for the conference session.
18. A non-transitory processor readable medium storing
instructions that, when executed by a processor, cause the
processor to:
at a load balancer configured to control a cluster of media
agents each configured to perform media packet pro-
cessing operations in a conference session, receive a
Session Traversal Utilities for Network Address Trans-
lation/Translator (NAT) (STUN) request from a caller to
establish media, the STUN request including a confer-
ence identifier (ID) for the conference session;

determine an availability of each of the media agents in the
cluster;

select a media agent for the caller based on the conference

ID and the determined media agent availabilities;

US 9,357,076 B2

23

forward the STUN request to the selected media agent; and

route media packets between the caller and the selected

media agent for the conference session.

19. The non-transitory processor readable medium of
claim 18, wherein the STUN request is received from the
caller over a first logical connection between the caller and
the load balancer,

the STUN request is forwarded to the selected media agent

over a second logical connection between the load bal-
ancer and the selected media agent; and

the non-transitory processor readable medium further

comprising instructions to cause the processor to:
store a connection mapping of the first logical connection
to the second logical connection, wherein the instruc-
tions include instructions to cause the processor to route
media packets between the caller and the selected media
agent over the first and second logical connections based
on the stored connection mapping.
20. The non-transitory processor readable medium of
claim 19, further comprising instructions to cause the proces-
sor to generate the connection mapping as a mapping between
first and second 5-tuples respectively identifying the first and
second logical connections, wherein each 5-tuple includes a
source Internet Protocol (IP) address, a source port, a desti-
nation IP address, a destination port, and a protocol.
21. The non-transitory processor readable medium of
claim 18, wherein the instructions include instructions to
cause the processor to:
determine for each media agent an operational/failure sta-
tus and a processor loading of the media agent; and

select a media agent that is determined to be operational
and utilize a consistent hash of the conference ID to the
set of available media agents.

22. The non-transitory processor readable medium of
claim 21, further comprising instructions to cause the proces-
sor to:

20

30

24

activate a new media agent if all existing media agents are
each determined to have processor loading above a high
threshold; and

deactivate any media agents determined to have processor

loading below a low threshold.

23. The non-transitory processor readable medium of
claim 18, further comprising instructions to cause the proces-
sor to:

receive a second STUN request from a second caller to join

the conference session, the second STUN request
including the conference ID; and

select the previously selected media agent for the second

caller based on the conference ID.

24. The non-transitory processor readable medium of
claim 18, wherein the instructions include instructions to
cause the processor to:

receive multiple join requests including respective confer-

ence IDs;

select a same one of the media agents for each of the

multiple join requests if the respective conference 1Ds
are the same; and

select different media agents for each of the multiple join

requests if the respective conference IDs are different.
25. The non-transitory processor readable medium of
claim 18, further comprising instructions to cause the proces-
sor to:
receive a second STUN request from the caller to join the
conference session, the second STUN request including
the conference identifier (ID) for the conference session;

determine that the operational status of the selected media
agent is down;

select a second media agent for the caller; and

route media packets between the caller and the second

selected media agent for the conference session.

#* #* #* #* #*

